sei in Home > Scienza > News > Dettaglio News
17 Giugno 2019 SCIENZA
https://www.focus.it
Che cos'è la meccanica quantistica
FOTOGALLERY
tempo di lettura previsto 6 min. circa

La meccanica quantistica, o teoria dei quanti, è una teoria che i suoi stessi creatori non capivano pienamente, ma che si è rivelata l'unica capace di spiegare il comportamento della materia nel mondo microscopico.

Una lavagna zeppa di simboli può sembrare indecifrabile anche se espone concetti semplici. Nella meccanica quantistica, però, anche il concetto più semplice appare assurdo. Un esempio? Il fatto che la materia "decide" che cosa fare... solo quando la guardiamo (!).

Nel cuore della materia c'è un mondo immenso, composto da miliardi e miliardi di particelle, che sfugge ai nostri sensi e alla nostra intuizione. Un mondo in cui non valgono le leggi fisiche usuali, ma quelle più complicate e "misteriose" della meccanica quantistica, una teoria così paradossale da stupire gli stessi scienziati che l'hanno inventata. "Nessuno la comprende davvero" ha detto nel 1965 Richard Feynman, uno dei fisici più brillanti della sua generazione.

AFFASCINANTE. Eppure questa teoria funziona, perché descrive il mondo degli atomi e delle molecole con precisione impeccabile. E ha moltissime applicazioni, dai laser alla risonanza magnetica. Anzi, si sospetta che siano alcuni fenomeni ad essa collegati, come l'effetto tunnel, a rendere possibile la fotosintesi e quindi la vita.

Non solo, la meccanica quantistica, per le sue caratteristiche quasi "magiche", da sempre affascina filosofi e scienziati. E oggi sta entrando nella nostra cultura "quotidiana", ispirando anche libri, film e opere d'arte. Ma che cos'è davvero questa teoria? E perché è così importante? Andiamo con ordine.

PARTICELLE MIRACOLO. Onde che si comportano come particelle, particelle che oltrepassano le barriere come fantasmi o che comunicano tra loro in modo "telepatico"... È questo lo strano mondo che gli scienziati si sono trovati di fronte quando hanno scoperto la meccanica quantistica.

Una delle caratteristiche principali di questa teoria è la quantizzazione. Cioè il fatto che, nel mondo microscopico, le quantità fisiche come l'energia non possono essere scambiate in modo "continuo", come un flusso d'acqua del rubinetto che si può dosare a piacere, ma attraverso "pacchetti" detti "quanti"... come acqua contenuta in bicchieri o bottiglie dal volume prefissato. In virtù di questa proprietà, la luce è composta da corpuscoli di energia detti "fotoni"; e anche gli atomi possono assorbire questa energia soltanto a pacchetti: un atomo, per esempio, può assorbire o emettere 1 o 2 o 3 o più fotoni, ma non 2, 7 fotoni o mezzo fotone.

È quello che avviene nell'effetto fotoelettrico, in base al quale un metallo colpito dal giusto tipo di luce produce elettricità: questo fenomeno, scoperto alla fine dell'800 e spiegato nel 1905 da Einstein, è alla base del funzionamento dei moderni pannelli fotovoltaici.

ONDA O PARTICELLA? La seconda "stranezza" della meccanica quantistica è il fatto che - come Giano Bifronte - tutte le particelle hanno una doppia natura: "In alcuni esperimenti si comportano come corpuscoli, in altri come onde" spiega Giancarlo Ghirardi, professore emerito di fisica all'Università di Trieste. "Un esperimento che mostra la natura ondulatoria degli elettroni è quello della doppia fenditura: si pone uno schermo sensibile di fronte a una doppia fenditura e si osserva che gli elettroni impressionano la lastra formando frange di interferenza, proprio come fa la luce (vedi disegno qui sotto). Altri esperimenti dimostrano invece che gli elettroni sono particelle".

Onda o particella? La luce passa da una fenditura, poi ne incontra altre due. Le onde interferiscono tra loro, creando chiazze alternate di luce e buio; se fossero particelle, ci sarebbe luce solo in A e in B. Con un fascio di elettroni accade la stessa identica cosa. Eppure, con altri esperimenti, si dimostra che gli elettroni sono particelle. Ecco perché si parla di "dualismo onda-particella".

IMPREVEDIBILE. La fisica classica è "prevedibile": permette di calcolare con precisione la traiettoria di un proiettile o di un pianeta. Nella meccanica quantistica, invece, quanto più precisamente si conosce la posizione di una particella, tanto più incerta diventa la sua velocità (e viceversa).

Lo dice il principio di indeterminazione, formulato nel 1927 dal fisico tedesco Werner Heisenberg. Quindi, se vogliamo descrivere il comportamento di un elettrone in un atomo, possiamo solo affermare che è localizzato in una nube intorno al nucleo, e la meccanica quantistica ci indica la probabilità che, effettuando una misura, l'elettrone si trovi in un certo punto. Prima della misura, lo stato dell'elettrone è descritto dall'insieme di tutti i possibili risultati: si parla quindi di sovrapposizione degli stati quantistici. Nel momento della misura, l'elettrone "collassa" in un singolo stato. Questo principio ha un risvolto concettuale importante: in un certo senso, con i loro strumenti di misura, gli scienziati intervengono nella creazione della realtà che stanno studiando.

Leggi anche: Cosa è il paradosso di Schrödinger?

COME FANTASMI. Un altro fenomeno quantistico bizzarro è l'effetto tunnel, cioè il fatto che le particelle possano superare una barriera come un fantasma passa attraverso un muro. "È così che si spiega il decadimento delle sostanze radioattive" dice Ghirardi. "La radiazione emessa da questi materiali, infatti, è costituita da particelle che superano una barriera energetica all'interno dei nuclei".

Un esperimento di propagazione della luce a velocità 4, 7 volte superiore rispetto a quella nel vuoto (ma senza violare la relatività di Einsein), un fenomeno reso possibile dalla propagazione attraverso una barriera energetica (effetto tunnel).

INTRECCI LUMINOSI. Tutto ciò è già abbastanza strano. Ma il fenomeno più curioso è l'entanglement ("intreccio"). Immaginiamo di prendere due fotoni in una "sovrapposizione di stati" - possiamo pensarli come monete che girano all'infinito, mostrando entrambe le facce (testa o croce) - e di sottoporli all'entanglement, per poi portarli ai lati opposti dell'universo.

Secondo la meccanica quantistica, se effettuiamo una misura su uno dei due, e otteniamo per esempio testa, anche l'altra moneta, istantaneamente, cessa di trovarsi in uno stato indeterminato: se la misuriamo (dopo un secondo o dopo un secolo) siamo sicuri che il risultato sarà testa. Le due particelle sono come in... contatto telepatico. Assurdo? No, entanglement!

COME STAR TREK. Questa caratteristica sorprendente si può usare per realizzare il teletrasporto quantistico (vedi gallery qui sotto). "Supponiamo di voler trasferire da un punto A a un punto B un fotone identificato dal suo stato di polarizzazione" dice Ghirardi. "Per farlo bisogna disporre, oltre al fotone da teletrasportare, di due fotoni entangled, uno in A e l'altro in B. Poi si fa interagire il fotone da teletrasportare con il primo fotone entangled (quello in A) e si comunica all'osservatore in B l'esito dell'operazione, e così facendo gli si indica come deve manipolare il secondo fotone entangled per ottenere una copia identica del fotone di partenza".

In pratica, le informazioni del fotone di partenza sono trasferite in B grazie all'intermediazione dei fotoni intrecciati: in realtà si tratta di un trasferimento di informazioni, più che di un trasferimento di materia come quello di Star Trek.

Il teletrasporto sarà così?

È per questo che il teletrasporto interessa soprattutto agli scienziati che studiano i computer quantistici del futuro. Computer, cioè, in cui sono elaborati qubit invece dei "bit" (sequenze di "0" e "1") dell'informatica tradizionale: il vantaggio è che i qubit consentono di svolgere in breve tempo, "in parallelo", operazioni che ai computer tradizionali richiederebbero anni. Così, con un numero "n" di qubit, la quantità di strade di calcolo che possono essere intraprese contemporaneamente è pari a 2N, cioè 2x2x2... x2, n volte: con meno di 300 qubit si supererebbe il numero di particelle dell'intero universo. Finora, però, si riescono a manipolare solo pochi qubit, e con grande difficoltà: il "magico" mondo dei computer quantistici è tutto da esplorare.

Più di recente, 2 fisici dell'Università del Queensland (Australia) hanno ideato perfino il teletrasporto "temporale", applicando l'entanglement al tempo anziché allo spazio, sempre con l'obiettivo di rendere possibili calcoli complessi. Ma, se funzionasse, sarebbe il primo vero esempio di macchina del tempo, sebbene un po' diversa da come la fantascienza l'ha sempre immaginata.

TAG: Computer